Examining Science Achievement in Chile: A Multilevel Model Approach


  • Noelia Pacheco Diaz The University of Tennessee, Knoxville
  • Louis Rocconi The University of Tennessee, Knoxville




PISA, gender differences, science achievement


This study employed data from the 2015 Chilean sample of the Programme for International Student Assessment to examine the factors that influence science achievement and factors that may reduce the gender gap in science achievement. Our research was guided by Eccles’ Expectancy-Value Theory, which focused on motivational factors that influence gender differences in students’ achievement choices and performance. Our results indicate that socioeconomic status (SES), motivation, enjoyment of science, expected occupational status, school SES, and class size are related to higher science achievement. Also, anxiety was negatively associated with science achievement. Implications for Chilean policymakers and school administrators to improve Chilean girls’ science achievement are discussed.


Abdelfattah, F. (2010). The relationship between motivation and achievement in low-stakes examinations. Social Behavior and Personality: An International Journal, 38(2), 159–168.

Al-Qahtani, M. F. (2013). Relationship between english language, learning strategies, attitudes, motivation, and students’ academic achievement. Education in Medicine Journal, 5(3), 19–29. https://doi.org/10.5959/eimj.v5i3.124

Areepattamannil, S., & Kaur, B. (2013). Factors predicting science achievement of immigrant and non-immigrant students: A multilevel analysis. International Journal of Science and Mathematics Education, 11(5), 1183–1207. https://doi.org/10.1007/s10763-012-9369-5

Ball, C., Huang, K. T., Cotten, S. R., Rikard, R. V., & Coleman, L. T. O. (2016). Invaluable values: An expectancy-value theory analysis of youths’ academic motivations and intentions. Information Communication and Society, 19(5), 618–638. https://doi.org/10.1080/1369118X.2016.1139616

Bandura, A. (1997). Self-efficacy:The exercise of control. New York: W. H. Freeman.

Beese, J., & Liang, X. (2010). Do resources matter? PISA science achievement comparisons between students in the United States, Canada and Finland. Improving Schools, 13(3), 266–279. https://doi.org/10.1177/1365480210390554

Braun, H., Jenkins, F., Grigg, W., & Tirre, W. (2006). Comparing private schools and public schools using hierarchical linear modeling. National Assessment of Educational Progress. https://doi.org/10.2307/2112546

Caldas, S. J., & Bankston, Carl, I. (1997). Effect of school population socioeconomic status on individual academic achievement. Journal of Educational Research, 90(5), 269–277.

Chen, C., Lee, S. Y., & Stevenson, H. W. (1996). Long-term prediction of academic achievement of american, chinese, and japanese adolescents. Journal of Educational Psychology, 88(4), 750–759. https://doi.org/10.1037/0022-0663.88.4.750

Cofré, H., Camacho, J., Galaz, A., Jiménez, J., Santibánez, D., & Vergara, C. (2010). La educación científica en Chile: Debilidades de la enseñanza y futuros desafíos de la educación de profesores de ciencia [Cientific education in Chile: Weaknesses in teaching and future challenges for science teachers]. Estudios Pedagógicos, XXXVI(2), 279–293. https://doi.org/10.4067/S0718-07052010000200016

Comunidad Mujer. (2017). Mujer y trabajo?: Brecha de género en STEM , la ausencia de mujeres en Ingeniería y Matemáticas[Women and work: Gender gap in STEM, the absence of women in Engineering and Mathematics] . Serie Comunidad Mujer, 42, 1–16.

CONICYT. (2017). Diagnóstico igualdad de género en ciencia, tecnología e innovación en Chile: Levantando evidencias, construyendo avances y pro-poniendo recomendaciones desde la colaboración pública y privada [Diagnostic of gender equality in science technology and innovation in Chile: Raising evidence, building progress and proposing recommendations from public and private collaboration]. Retrieved from https://www.conicyt.cl/wp-content/uploads/2015/03/Diagnostico-Equidad-de-Genero-en-CTI-MESA-CONICYT_2017.pdf

Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum.

Delaney, E. M., Kaiser, A. P., & Delaney, E. M. (1997). The effects of poverty on parenting young children. Peabody Journal of Education (0161956X), 71(4), 66–85. https://doi.org/10.1080/01619569609595129

Eccles (Parsons), J. (1983). Expectancies, values and academic behaviours. In J. T. Spence (Ed.), Achievement and achievement motives (pp. 75–138). San Francisco, CA: W. H. Freeman and Company.

Eccles, J. (2011). Gendered educational and occupational choices: Applying the Eccles et al.1 model of achievement-related choices. International Journal of Behavioral Development, 35(3), 195–201. https://doi.org/10.1177/0165025411398185

Eccles, J. S. (1987). Gender roles and women’s achievement-related decisions. Psychology of Women Quarterly, 11, 135–172.

Eccles, J. S. (2014). Gendered socialization of STEM interests in the family. International Journal of Gender, Science and Technology, 7(July), 116–132.

Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values and goals. Annual Review.

Else-Quest, N. M., Mineo, C. C., & Higgins, A. (2013). Math and science attitudes and achievement at the intersection of gender and ethnicity. Psychology of Women Quarterly, 37(3), 293–309. https://doi.org/10.1177/0361684313480694

Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychological Methods, 12(2), 121-138.

Gaspard, H., Wille, E., Wormington, S. V., & Hulleman, C. S. (2019). How are upper secondary school students’ expectancy-value profiles associated with achievement and university STEM major? A cross-domain comparison. Contemporary Educational Psychology, 58(February), 149–162. https://doi.org/10.1016/j.cedpsych.2019.02.005

Gonzalez de San Ramon, A., & De la Rica Goicelaya, S. (2016). Gender gaps in PISA test Scores: The impact of social norms and the mother’s transmission of role attitudes. IZA, 34(1), 79–108. https://doi.org/10.1145/367177.367199

Hox, J. J., Moerbeek, M., & De Schoot, R. van. (2018). Multilevel analysis: Techniques and applications (3rd ed.). New York, NY: Routledge.

Instituto Nacional de Estadistica Chile [Chiliean National Statistics Center]. (2016).

Enfoque estadístico: Genero y empleo [Statistics focus: Gender and employment]. Retrived from: http://historico.ine.cl/genero/files/estadisticas/pdf/documentos/enfoque-estadistico-genero-y-empleo.pdf.

Instituto Nacional de Estadistica Chile [Chiliean National Statistics Center]. (2017). Genero

e ingresos [Gender and income].Retived from https://historicoamu.ine.cl/genero/files/estadisticas/pdf/documentos/genero_ingresos_2017.pdf

Joensen, J. S., & Nielsen, H. S. (2013). Math and gender: Is Math a route to a high-powered career? IZA, (7164). https://doi.org/10.2139/ssrn.2333187

Koc, N., & Celik, B. (2015). The impact of number of students per teacher on student achievement. Procedia - Social and Behavioral Sciences, 177(July 2014), 65–70. https://doi.org/10.1016/j.sbspro.2015.02.335

Martin, M. O., Mullis, I. V. ., Foy, P., & Hooper, M. (2016). TIMSS 2015 international results in science (Vol. 1).

McGraw, R., Theule Lubienski, S., & Strutchens, M. E. (2006). A closer look at gender in NAEP mathematics achievement and affect data: Intersections with achievement, race/ethnicity, and socioeconomic status. Journal for Research in Mathematics Education, 37(2), 129–150. https://doi.org/10.2307/30034845

Ministerio de Educacion [Ministry of Education]. (2019). Mi futuro [My future]. Retrieved from www.mifuturo.cl/buscador-de-empleabilidad-e-ingresos/

Ministerio de Educación de Chile [The Ministry of Education of Chile]. (2015). Variación de matrícula y tasas de permanencia por sector [Variation of enrolment and retention rates by sector]. Ministerio de Educacion. Retrieved from http://centroestudios.mineduc.cl/tp_enlaces/portales/tp5996f8b7cm96/uploadImg/File/Evidencias/Evidencias final_julio_2015.pdf

Mueller, C. W., & Parcel, T. L. (1981). Measures of socioeconomic status?: Alternatives and recommendations. Society for Research in Development, 52(1), 13–30.

Musu-Gillette, L. E., Wigfield, A., Harring, J. R., & Eccles, J. S. (2015). Trajectories of change in students’ self-concepts of ability and values in math and college major choice. Educational Research and Evaluation, 21(4), 343–370. https://doi.org/10.1080/13803611.2015.1057161

OECD. (2009). PISA data analysis manual: SPSS, second edition. OECD. https://doi.org/10.1787/9789264056275-en

OECD. (2012). Public and private schools: How management and funding relate to their soci0-economic profile. https://doi.org/10.1787/9789264175006-en

OECD. (2016). PISA 2015 Results: Excellence and equity in Education (Vol. I). Paris: OECD Publishing.

OECD. (2017a). PISA 2015 technical report. OECD Publishing. https://doi.org/10.1787/9789264255425-en

OECD. (2017b). PISA 2015 Results (Volume III): Students’ well-being. (PISA, Ed.). Paris: OECD Publishing.

OECD. (2018a). Education GPS. Retrieved from http://gpseducation.oecd.org/

OECD. (2018b). Chile. In Education at glance 2018: OECD indicators (pp. 1–8). Paris: OECD Publishing. Retrieved from https://doi.org/10.1787/kpiu8i-es

Parsons Eccles, J., Adler, T., & Meece, J. L. (1984). Sex differences in achievement: A test of alternate theories. American Psychological Association, 46(1), 26–43.

Patton, M. Q. (2012). Essentials of utilization-focused evaluation (6th ed.). Los Angeles, Calif.: SAGE.

Perry, L. B., & McConney, A. (2010). Does the SES of the school matter? An examination of socioeconomic status and student achievement using PISA 2003. Teachers College Record, 112(4), 1137–1162.

Radovic-Sendra, D. (2018). Gender differences in Mathematics attainment in Chile. Revista Colombiana de Educación, (74), 221–241. Retrieved from http://www.scielo.org.co/pdf/rcde/n74/en_0120-3916-rcde-74-00221.pdf

Raudenbush, S., & Bryk, A. (2002). Hierarchical linear models (second edition). Thousand Oaks, CA: Sage Publications.

Raudenbush, S., Bryk, A., & Congdon, R. (2013). HLM 7 Hierarchical linear and nonlinear modeling [computer software]. Skokie, IL: Scientific Software International.

Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, 24(7), 1301–1308. https://doi.org/10.1177/0956797612466268

Rozek, C. S., Hyde, J. S., Svoboda, R. C., Hulleman, C. S., & Harackiewicz, J. M. (2015). Gender differences in the effects of a utility-value intervention to help parents motivate adolescents in mathematics and science. Journal of Educational Psychology, 107(1), 195–206. https://doi.org/10.1037/a0036981

Sáinz, M., & Müller, J. (2018). Gender and family influences on Spanish students’ aspirations and values in stem fields. International Journal of Science Education, 40(2), 188–203. https://doi.org/10.1080/09500693.2017.1405464

Samad, M. M. A. (2018). Gender gap in science achievement for jordanian students in PISA2015. European Journal of Educational Research, 7(4), 963–972. https://doi.org/10.12973/eu-jer.7.4.963

Santiago, P., Fiszbein, A., García Jaramillo, S., & Radinger, T. (2017). OECD reviews of school resources: Chile 2017. https://doi.org/http://dx.doi.org/10.1787/9789264285637-en

Santos, H., & Elacqua, G. (2016). Socioeconomic school segregation in Chile: Parental choice and a theoretical counterfactual analysis. CEPAL Review, 119, 123–137. https://doi.org/10.18356/938a3490-en

Sawtelle, V., Brewe, E., & Kramer, L. H. (2012). Exploring the relationship between self-efficacy and retention in introductory physics. Journal of Research in Science Teaching, 49(9), 1096–1121. https://doi.org/10.1002/tea.21050

Šimunovi?, M., Rei? Ercegovac, I., & Buruši?, J. (2018). How important is it to my parents? Transmission of STEM academic values: the role of parents’ values and practices and children’s perceptions of parental influences. International Journal of Science Education, 40(9), 977–995. https://doi.org/10.1080/09500693.2018.1460696

Sirin, S. R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research, 75(3), 417–453.

Stoet, G., & Geary, D. C. (2013). Sex differences in mathematics and reading achievement are inversely related: Within- and across-nation assessment of 10 years of PISA data. PLoS ONE, 8(3). https://doi.org/10.1371/journal.pone.0057988

Sun, L., Bradley, K. D., & Akers, K. (2012). A multilevel modelling approach to investigating factors impacting science achievement for secondary school students: PISA Hong Kong sample. International Journal of Science Education, 34(14), 2107–2125. https://doi.org/10.1080/09500693.2012.708063

The World Bank. (2015). Development indicators: The GINI index. Retrieved from http://data.worldbank.org/indicator/ SI.POV.GINI

The World Bank. (2018). The World Bank in Chile. Retrieved February 19, 2019, from https://www.worldbank.org/en/country/chile/overview#1

Troncoso, P., Pampaka, M., & Olsen, W. (2016). Beyond traditional school value-added models: A multilevel analysis of complex school effects in Chile. School Effectiveness and School Improvement, 27(3), 293–314. https://doi.org/10.1080/09243453.2015.1084010

Tucker-Drob, E. M., Cheung, A. K., & Briley, D. A. (2014). Gross domestic product, science interest, and science achievement: A person × nation interaction. Psychological Science, 25(11), 2047–2057. https://doi.org/10.1177/0956797614548726

U.S. Department of Education. (2018). Secretary DeVos visits “She Can” STEM summer camp. Retrieved from https://www.ed.gov/news/press-releases/secretary-devos-visits-she-can-stem-summer-camp

Udo, M. K., Ramsey, G. P., & Mallow, J. V. (2004). Science anxiety and gender in students taking general education science courses. Journal of Science Education and Technology, 13(4), 435–446. https://doi.org/10.1007/s10956-004-1465-z

United Nations. (2017). UN Gender Statistics. Retrieved February 19, 2019, from https://genderstats.un.org/#/countries

Wenglinsky, H. (2007). Are private high schools better academically than public high schools?? Think Tank Research Quality: Lessons for Policymakers, the Media, and the Public.

Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25(1), 68–81. https://doi.org/10.1006/ceps.1999.1015

Witte, J. F. (1992). Private school versus public school achievement: Are there findings that should affect the educational choice debate? Economics of Education Review, 11(4), 371–394. https://doi.org/10.1016/0272-7757(92)90043-3.




How to Cite

Pacheco Diaz, N., & Rocconi, L. (2021). Examining Science Achievement in Chile: A Multilevel Model Approach . Journal of Research in STEM Education, 7(2), 93–116. https://doi.org/10.51355/jstem.2021.100